Pupils identify their existing ideas, learning needs and interests, and consider those of peers. E.g. mindmaps, annotated drawings, KWL grids, mini whiteboards, post its, talk partners.

Pupils focus on science knowledge, understanding, skills and attitudes in learning objectives and success criteria. E.g. be clear about science focus rather than presentation etc.

Pupils assess their own ideas and work against known criteria. E.g. traffic lighting or highlighting objective, commenting on whether predictions are supported.

Pupils assess peers’ ideas and work against known criteria. E.g. comment on another group’s presentation, give 2 stars and a wish for piece of work.

Pupils use assessment to advance their learning by acting on feedback. E.g. respond to mini plenary advice in second half of lesson, make improvements in next investigation.

Pupils collaboratively (with peers/teachers) identify next steps in learning. E.g. identify which part of the success criteria is missing, consider how to make the measurement more accurate.

Teachers plan opportunities to elicit pupils’ science knowledge and skills. E.g. plans show range of elicitation strategies at variety of times E.g. beg/mid/ end lesson.

Teachers involve pupils in discussing learning objectives and criteria for success. E.g. discuss what good observation or conclusions look like.

Teachers gather evidence of their pupils’ learning through questioning/discussion and observation. E.g. Open Qs, class mindmap/concept cartoon, TA postit quotes, floorbook, annotated photos.

Teachers gather evidence of their pupils’ learning through study of the products of activities and tasks. E.g. any recording, models, sorting.

Teachers use assessment to advance pupils’ learning by adapting the pace, challenge and content of activities. E.g. support or challenge in response to pupils.

Teachers use assessment to advance pupils’ learning by giving feedback to students about how to improve. E.g. marking, oral feedback, next steps, extension Qs.

Teachers use assessment to advance pupils’ learning by providing time for students to reflect on and assess their own work. E.g. read and respond time.

Teachers base their summative judgements of pupils’ learning on a range of types of activity. E.g. not reliant on one snapshot to make overall judgement.

Teachers take part in moderation/discussion with each other of pupils’ work in order to align judgements. E.g. staff meeting discussions of science work.

There is a shared understanding of progression in science. E.g. staff map progression of skills, TAs are involved in assessments.

Pupils are aware of the criteria by which their work over a period of time is judged. E.g. examples of what good science looks like are displayed.

A manageable system for record-keeping is in operation to track and report on pupils’ learning in science. E.g. expectations on planning which annotate, end of topic grids, I cans.

2. MONITORING

Teachers summarise achievements in terms of what pupils can do, not only in terms of levels, grades or %. E.g. progress in skills is passed onto the next teacher.

Parents/carers receive oral and written reports that identify the next steps for their children. E.g. at parents’ evening, comments on homework.

Summaries of pupil progress across the cohort draw on a range of information. E.g. learning across a range of contexts is used to decide support or extension needs.

3. SUMMATIVE REPORTING

Science assessment processes provide a valid and reliable summary of pupil achievement at the end of Key Stages.

4. WHOLE-SCHOOL REPORTING

- NEW EVIDENCE
- SOME EVIDENCE
- NO EVIDENCE

FEEDBACK FROM DIALOGUE WITH SCHOOL LEADERSHIP, GOVERNORS AND PARENTS INFORMS CHANGES TO SCIENCE ASSESSMENT.

TEACHER-PUPIL/PARENT CONFERENCES INCLUDE DIALOGUE ON ATTAINMENT IN SCIENCE.